

1.	Begrüßung / Vorstellung	2
2.	Optimierungsbedarf und Automatisierungsmöglichkeiten	4
3.	Hindernisse einer erfolgreichen Brownfieldautomatisierung	7
4.	Brownfield-Technologien	9
5.	Alternativen zu Automatisierungsansätzen	11
6.	Back Up - Studiendesign	13

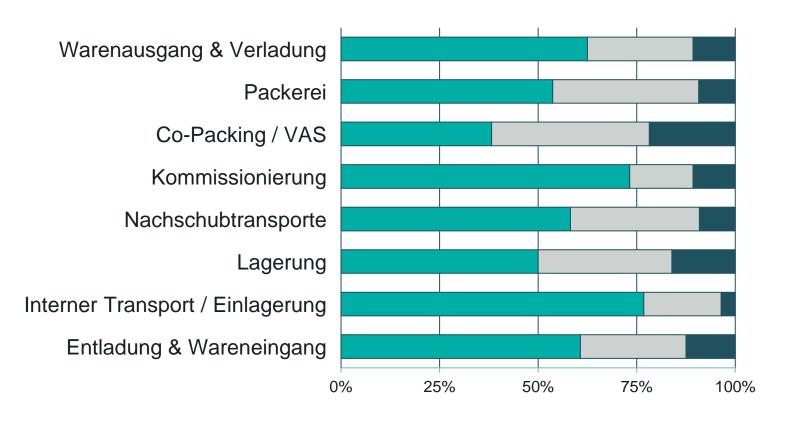
LOGIMAT 2024

Brownfield Automation

- eine Alternative zu Greenfield-Neubauten
- in wirtschaftlich schwierigen Zeiten weitere Kostenpotentiale zu heben

Ihre Erfahrungen sind gefragt:

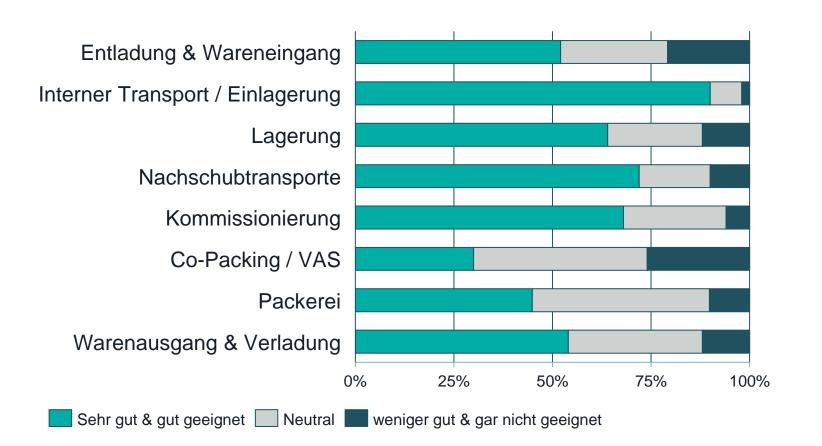
- wo besteht der größte Bedarf?
- Automatisierungspotential?
- Technologie-Bekanntheit?
- Hindernisse & Alternativen



1.	Begrüßung / Vorstellung	2
2.	Optimierungsbedarf und Automatisierungsmöglichkeiten	4
3.	Hindernisse einer erfolgreichen Brownfieldautomatisierung	7
4.	Brownfield-Technologien	9
5.	Alternativen zu Automatisierungsansätzen	11
6.	Back Up - Studiendesign	13

Größter Optimierungsbedarf in Kommissionierung und interner Transport, geringster Bedarf in VAS identifiziert

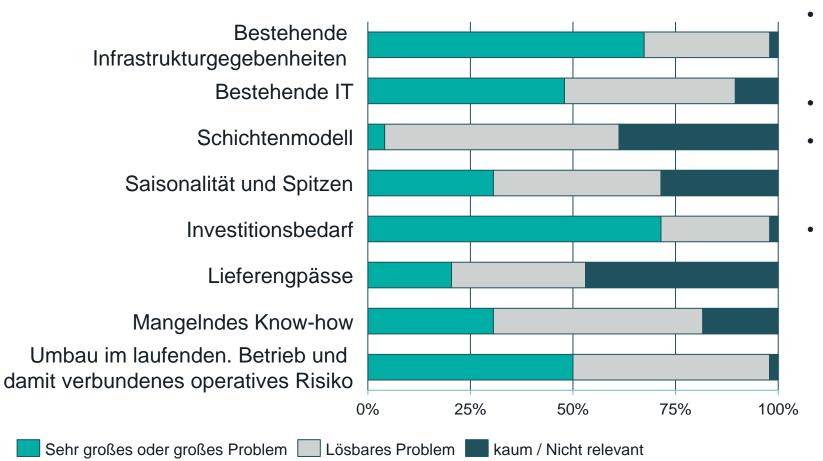
Optimierungsbedarf je Prozess


- Den Optimierungsbedarf in der Kommissionierung halten rund 36% für sehr hoch und weitere ca. 38% für hoch.
- Den Optimierungsbedarf für interne Transport / Einlagerung halten rund 25% für sehr hoch und weitere ca. 52% für hoch.
- Sehr hoher bzw. hoher
 Optimierungsbedarf werden auch für Ent- (11% und 50%) und Verladung (11% und 52%) identifiziert.

Sehr hoher & Hoher Neutral geringer & sehr geringer
Optimierungsbedarf Optimierungsbedarf

internen Transport am geeignetsten zur Automatisierung bewertet, aber auch hohe Werte für Kommissionierung und Lagerung

Eignung unterschiedlicher Prozesse zur Brownfield-Automatisierung


- Internen Transport / Einlagerung halten rund 30% für sehr gut und weitere ca. 60% für gut geeignet.
- Kommissionierung halten rund 18% für sehr gut und weitere ca. 50% für gut geeignet.
- Für Entladung und Verladung wird der Bedarf an Optimierung höher eingeschätzt als die Eignung zur Automatisierung während für alle andere Prozesse Optimierungsbedarf und Automatisierungseignung Schritt halten.

1.	Begrüßung / Vorstellung	2
2.	Optimierungsbedarf und Automatisierungsmöglichkeiten	4
3.	Hindernisse einer erfolgreichen Brownfieldautomatisierung	7
4.	Brownfield-Technologien	9
5.	Alternativen zu Automatisierungsansätzen	11
6.	Back Up - Studiendesign	13

Investitionsbedarf und heutige bauliche Infrastruktur bewerten die Teilnehmer als größte Hindernisse einer Automatisierung

Hindernisse einer Automatisierung

Weitere Hindernisse:

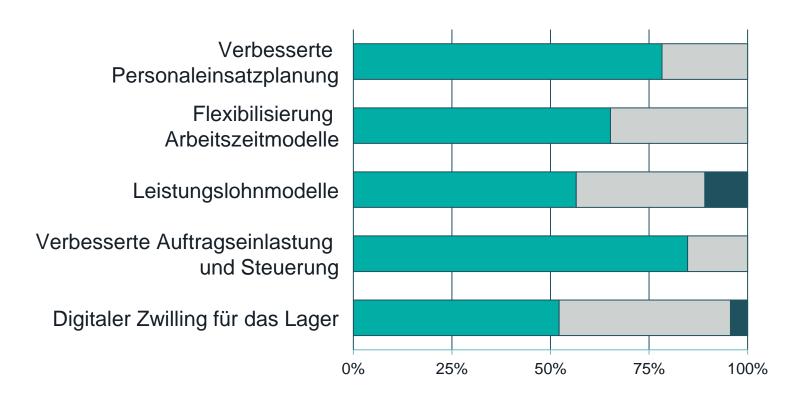
- MangeIndes Automatisierungsangebot, z.B.: Container-Entladung, Pickroboter, selbstfahrende FFZ
- hoher Preis für zu geringe Leistung
- Fachkräftemangel Entwicklung und / oder Akquise von ausreichend **Fachpersonal**
- Mehrwert erfordert Betrachtung aller relevanten Prozesse End-to-End, oftmals werden im Brownfield aber nur 'Puzzelstücke' verändert und nicht das Gesamtbild

1.	Begrüßung / Vorstellung	2
2.	Optimierungsbedarf und Automatisierungsmöglichkeiten	4
3.	Hindernisse einer erfolgreichen Brownfieldautomatisierung	7
4.	Brownfield-Technologien	9
5.	Alternativen zu Automatisierungsansätzen	11
6.	Back Up - Studiendesign	13

Automatikläger und AGVs am weitesten verbreitet, AGVs / automatisierte Stapler und Be-/Entladetechnologien derzeit im Fokus

		In Prüfung / Interesse		Schon einmal gehört	Unbekannt
Automatische Be- / Entladetechnologien	9%	36%	42%	13%	0%
AGVs / AMRs für Palettentransport	35%	37%	22%	4%	2%
Automatisierte Stapler	20%	37%	30%	9%	4%
Automatischer Behältertransport (z.B. Locus, Carry Pick, etc.)	24%	22%	35%	15%	4%
Cobots (z.B. 6River)	2%	17%	48%	20%	13%
Automatisches Picken (z.B: magazino)	7%	30%	41%	23%	0%
Lagertechnologien (Skypot, Autostore, Shuttle / AKLs, etc.)	52%	28%	17%	2%	0%
Automatische Packstraßen, Boxon -Demand, Verschließer, etc.	26%	20%	37%	15%	2%

- Mit Abstand größte Verbreitung weisen automatisierte Lagertechnologien auf, die geringste Cobots, automatische Picker und Be-/Entladetechnologien.
- Cobots stehen zudem aktuell nur gering im Fokus des Interesses möglicher Anwender, vielleicht auch aufgrund ihres geringsten Bekanntheitsgrades.
- Derzeit besonders im Fokus der Anwender sind AGVs / AMRs für Palettentransporte, automatisierte Stapler und Be-/Entladetechnologien.



1.	Begrüßung / Vorstellung	2
2.	Optimierungsbedarf und Automatisierungsmöglichkeiten	4
3.	Hindernisse einer erfolgreichen Brownfieldautomatisierung	7
4.	Brownfield-Technologien	9
5.	Alternativen zu Automatisierungsansätzen	11
6.	Back Up - Studiendesign	13

Eine verbesserte Auftragseinlastung und -steuerung sowie Personaleinsatzplanung stellen echte Alternativen zur Automatisierung dar

Alternativen zur Automatisierung

- Eine verbesserte Auftragseinlastung und –Steuerung erachten 37% für sehr relevant und weitere 48% für relevant.
- Eine verbesserte Personaleinsatzplanung erachten 33% für sehr relevant und weitere 46% für relevant.
- Hingegen spielt der Digitale Zwilling eine untergeordnete Rolle, obwohl dieser ein sehr leistungsstarkes Instrument zur Verbesserung von Auftragseinlastung und –Steuerung sowie Personaleinsatzplanung ist!

⁽sehr) relevant ___ neutral ___ weniger/nicht hilfreich

1.	Begrüßung / Vorstellung	2
2.	Optimierungsbedarf und Automatisierungsmöglichkeiten	4
3.	Hindernisse einer erfolgreichen Brownfieldautomatisierung	7
4.	Brownfield-Technologien	9
5.	Alternativen zu Automatisierungsansätzen	11
6.	Back Up - Studiendesign	13

Studiendesign

Teilnehmer

- 66 Teilnehmer
- KW 9/10 2024
- Unterschiedlichste Branchen wie Automotive, Chemie, Industrial, Handel und Logistikdienstleister

Format

- Online-Fragebogen mit überwiegend geschlossenen Fragen
- Anschreiben potentieller Teilnehmer per Email

Ergebnisse

 Vorstellung der Ergebnisse im Zuge eines Talks auf der LOGIMAT

Miebach Consulting

Prof. Dr. Bernd Müller-Dauppert Mitglied der Geschäftsleitung

[Frankfurt mueller-dauppert@miebach.com

Dr. Klaus-Peter Jung Partner

Frankfurt jung@miebach.com